10n^2=n^2+15

Simple and best practice solution for 10n^2=n^2+15 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 10n^2=n^2+15 equation:



10n^2=n^2+15
We move all terms to the left:
10n^2-(n^2+15)=0
We get rid of parentheses
10n^2-n^2-15=0
We add all the numbers together, and all the variables
9n^2-15=0
a = 9; b = 0; c = -15;
Δ = b2-4ac
Δ = 02-4·9·(-15)
Δ = 540
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{540}=\sqrt{36*15}=\sqrt{36}*\sqrt{15}=6\sqrt{15}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{15}}{2*9}=\frac{0-6\sqrt{15}}{18} =-\frac{6\sqrt{15}}{18} =-\frac{\sqrt{15}}{3} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{15}}{2*9}=\frac{0+6\sqrt{15}}{18} =\frac{6\sqrt{15}}{18} =\frac{\sqrt{15}}{3} $

See similar equations:

| 0=x(2)+6x+9 | | (4x+8)(1-2x)=0 | | -4=6+h | | 10=5-2d | | 6.2y=4 | | 65=5/8n | | 1/3x-1/2=5/4x+10 | | f+5=7 | | X+3x=450 | | 7w-4=3w+4 | | 9^2+6^2=r | | 18=-2r | | -1/2(6x-18)=-30 | | Y=99x^2+858 | | 9^2+6^2=90r | | 3a2+12=0 | | 5n^2-20n-54=0 | | H(t)=99t^2+858 | | X^+11x-210=0 | | 9^2+6^2=90r^2 | | w2-36=-64 | | k2-196=0 | | 9r^2+6r^2=90^2 | | 0.2(y+10)=-25 | | -12-5(6+2m)=18 | | 9r*2+6r*2=90*2 | | N4=3n= | | p + -3.8 = 9.1 | | 90=(2x+16)+(3x+1) | | 9r*2+6r*2=C*2 | | 3n=21.N= | | 1/4=p/8 |

Equations solver categories